Abstract

Tonpilz is a popular transducer for underwater projector arrays for sonar systems. For low-frequency transmission, a larger axial dimension of the conventional Tonpilz transducer is required. However, a bulky and heavy Tonpilz element is not suitable due to limitations in terms of the space and payload of the array platform. To address this problem, we developed a rear-mounted Tonpilz transducer to generate a sub-fundamental resonance in addition to the common longitudinal resonance. For this purpose, we developed a new equivalent circuit model that can reflect all the effects of the key design parameters of the transducer, such as suspension thickness (stiffness), tail mass thickness, and head mass thickness. The impedance and transmitting voltage response were evaluated as performance factors at both resonance frequencies. The validity of the circuit was verified by comparing the analysis results with those from the finite element analysis of the same transducer. Based on the results, the transducer structure was designed to have comparable transmitting performance at both resonance frequencies by employing relatively high suspension stiffness, light tail mass, and heavy head mass. The novel design can permit the dual-band operation of the transducer so that the transducer can operate as a wideband projector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.