Abstract

AbstractContinuous stereolithography offers significant speed improvements over traditional layer‐by‐layer approaches but is more susceptible to cure‐through, undesired curing along the axis of exposure. Typically, cure‐through is mitigated at the cost of print speed by reducing penetration depth in the photopolymer resin via the addition of nonreactive light absorbers. Here, a mathematical approach is presented to model the dose profile in a part produced using continuous stereolithography. From this model, a correction method is developed to modify the projected images and produce a chosen dose profile, thereby reducing cure‐through while maintaining print speed. The method is verified experimentally on a continuous stereolithographic 3D printer, and the practicality of various dose profiles is investigated. In optimizing the critical dose parameter, the measured gelation dose Dgel is found to be insufficient for accurate reproduction of features, and an optimal value of Dc = 5Dgel is chosen for the test resin. Using optimized parameters with a high‐absorbance height resin (ha = 2000 µm), feature height errors are reduced by over 85% in a test model while maintaining a high print speed (s = 750 mm h−1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.