Abstract
This research introduces a model-based approach for the analysis and control of an onboard charger (OBC) system for contemporary electrified vehicles. The primary objective is to integrate the modeling of SiC/GaN MOSFETs electrothermal behaviors into a unified simulation framework. The motivation behind this project stems from the fact that existing literature often relies on finite element method (FEM) software to examine thermal dynamics, necessitating the development of complex models through partial derivative equations. Such intricate models are computationally demanding, making it difficult to integrate them with circuit equations in the same virtual environment. As a result, lengthy wait periods and a lack of communication between the electrothermal models limit the thorough study that can be conducted during the design stage. The selected case study for examination is a modular 1ϕ (single phase) onboard computer (OBC). This system comprises a dual active bridge (DAB) type DC/DC converter, which is positioned after a totem pole power factor correction (PFC) AC/DC converter. Specifically, the focus is directed toward a 7 kW onboard computer (OBC) utilizing high-voltage SiC/GaN MOSFETs to ensure optimal efficiency and performance. A systematic approach is presented for the assessment and selection of electronic components, employing circuit models for the totem pole power factor correction (PFC) and dual active bridge (DAB) converter. These models are employed in simulations closely mimicking real-world scenarios. Furthermore, rigorous testing of the generated models is conducted across a spectrum of real-world operating conditions to validate the stability of the implemented control algorithms. The validation process is bolstered by a comprehensive exploration of parametric variations relative to the nominal case. Notably, each simulation adheres to the recommended operational limits of the selected components and devices. Detailed data sheets encompassing electrothermal properties are provided for contextual reference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.