Abstract

The amount of electricity generation from renewable energy resources (RES) has been increasing significantly all over the globe. However, traditional power grid management is challenged when a large amount of intermittent and unpredictable RES-based generation units are integrated into the power network. This can lead to more severe grid frequency fluctuation events. In this paper, a variable speed drive (VSD) based motor load is utilized as a frequency responsive load to support grid frequency stability. A primary frequency control scheme is proposed and applied to the VSD-based motor load, which incorporates the sophisticated rotating speed feedback controller. Additionally, the proposed frequency responsive VSD-based load is modeled and simplified. As a result, a droop-like response can be achieved with multiple VSD load units. The effectiveness of the proposed model and control scheme is evaluated by experimental studies performed in a multi-converter-based hardware testbed (HTB).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call