Abstract
Thermocouples are a widely used sensor in Semiconductor manufacturing because of their relatively low cost and ease of use. Most users in an attempt to improve measurement accuracy, purchase pre-calibrated thermocouples and establish replacement or re-calibration schedules. Unfortunately, these processes are often not based on actual thermocouple drift data, but most likely base don historical practice, opinion, or misinformation. This paper addresses the simple, but often misunderstood physics behind how thermocouples 'feel' temperature, and models the various sources of error that can occur with this sensor. Using this information, this paper outlines a procedure for ensuring accurate measurement in a production environment. The electronics used to convert the thermocouple signal to a temperature is discussed, along with how thermocouples are calibrated and why in-situ calibration in the field is not practical. Sources of measurement error are modeled including incoming calibration error, manual data-entry error of calibration data, tool or electronically induced error, and drift over time. These sources of error are described and modeled for 'type R' thermocouples, the most widely used thermocoupled for high temperature diffusion applications, using over five years of manufacturing data from over 70 horizontal and vertical diffusion furnaces.© (2000) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.