Abstract
This paper presents a modeling and control of new model in a spatial coordinates (x, y, z), from this structures we choose: regular pyramid of a square basis manipulated by five cables and eight cables for a cubic shape. The main objective of this work is to integrate the axe (z) on the horizontal plane (x, y) i-e the plan 3D. This last their intervention especially when we obliged to transfer the end effector from point to point, for that we used the direct and inverse geometric model to study and simulate the end effector position of the robot with five and eight cables. A graphical user interface has been implemented in order to visualizing the position of the robot. Secondly, we present the desired path and determination the tensions and cables lengths of kinematic model required to follow spiral trajectory. At the end, we study the response of our systems in closed loop with a Proportional-Integrated-Derivative (PID) using MATLAB/Simulink which used to verify the performance of the controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.