Abstract
This article will compare two different fuzzy-derived techniques for controlling small internal combustion engine and modeling fuel spray penetration in the cylinder of a diesel internal combustion engine. The first case study is implemented using conventional fuzzy-based paradigm, where human expertise and operator knowledge were used to select the parameters for the system. The second case study used an adaptive neuro-fuzzy inference system (ANFIS), where automatic adjustment of the system parameters is affected by a neural networks based on prior knowledge. The ANFIS model was shown to achieve an improved accuracy compared to a pure fuzzy model, based on conveniently selected parameters. Future work is concentrating on the establishment of an improved neuro-fuzzy paradigm for adaptive, fast and accurate control of small internal combustion engines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.