Abstract

AbstractUsing a bi-turbocharged configuration makes for better utilization of the exhaust energy and a faster torque response in V-type engines. A special surge phenomenon that should be avoided in bi-turbocharged engines is co-surge, which is when the two interconnected compressors alternately go into flow reversals. If co-surge should occur, the control system must be able to quell the oscillations with as little disturbance in torque as possible. This paper presents a model of a bi-turbocharged engine based on a Mean Value Engine Model that includes a More-Greizer compressor model for surge. The model is validated against measured data showing that it captures the frequency and amplitude of the co-surge oscillation. The effect of momentum conservation in the pipes is investigated by adding this feature to the control volumes before and after the compressor. This gives a slightly better mass flow shape with the drawback of increased simulation time, due to more states and a higher frequency content in the model. A sensitivity analysis is performed to investigate which model parameters have most influence on the co-surge behavior. It is shown that the largest influence comes from the turbocharger inertia, the volumes after the compressor and the “zero mass flow pressure ratio” during flow reversal in the compressor. The model is used to investigate principles for control strategies to detect and quell co-surge. The detection algorithm is evaluated on measured data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.