Abstract

We propose a dynamical model for mean inlet pressure estimation in an implantable rotary blood pump (IRBP). Noninvasive measurements of pump impeller rotational speed, motor power, and pulse width modulation signal (PWM) to the motor controller were used as inputs to the model. Linear regression between estimated and measured inlet pressure resulted in a highly significant correlation (R2 = 0.9503) and small mean absolute error (e = 2.31 mmHg). The proposed model was also used to design a controller to regulate pump inlet pressure using noninvasively measured pump rotational speed and motor power. The control algorithm was tested using both constant and square wave reference inputs. In the presence of models uncertainties, the controller was able to track and settle to the desired input within a finite number of sampling periods with minimal error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.