Abstract

Energetic macroscopic representation (EMR) is an effective graphical modeling tool for multiphysical systems, and EMR model clearly illustrates the power flow and interaction between different subcomponents. This paper presents the modeling and control of a novel linear-driven electro-hydrostatic actuator (LEHA) with EMR method. The LEHA is a novel electro-hydrostatic actuation system, and the hydraulic cylinder in LEHA is driven by a novel collaborative rectification pump (CRP), which incorporates two miniature cylinders and two spool valves. EMR model clearly illustrated the powertrain in LEHA and interaction between each components. Based on EMR model, a maximum control structure (MCS) is easily deduced using the action and reaction principle, and then the practicable controller deduced from MCS shows satisfying performance in the simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call