Abstract

A decentralized control concept for the active damping of elastic boom vibrations of a mobile concrete pump is presented. The weaknesses of the existing hydraulic actuation concept in view of the control task are identified and an alternative concept is proposed. Furthermore, a systematic approach for the derivation of a tailored simulation model is illustrated. Based on the mathematical description of the hydraulic system a feedforward controler for the cylinder piston velocity is designed. The proposed passivity-based feedback control law is motivated by the analysis of a single rotating flexible beam with the angular velocity as a virtual control input. The methods are tested by means of simulation results on a validated mathematical model of a mobile concrete pump.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.