Abstract
A data-based approach is presented for modeling and controller design of a dual-stage servo actuator in a hard disk drive. The servo actuator in this hard disk drive consists of a conventional voice coil motor and a piezo-electrically actuated suspension. A weighted Hankel matrix based realization algorithm that uses frequency domain data is applied to estimate a discrete-time model of the voice coil motor and the piezoelectric actuator. Based on the discrete-time models, different dual-stage track-following controllers were designed using classic and H∞ loop shaping techniques. The controllers were implemented in real-time in the investigated hard disk drive. A stable feed-back control and good agreement between measurements and simulations show the promising result of data based modeling and control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Mechanical Design, Systems, and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.