Abstract

Distillation columns represent the most widely used separation equipment in the petrochemical industry. It is usually difficult to apply the traditional mechanism modeling method to online optimization and control because of its complex structure, and common simplified models produce obvious errors. Therefore, we analyze the mass transfer process of gas-liquid fluid on each column tray based on the theory of gas-liquid equilibrium and establish a nonlinear dynamic model of the distillation process. The proposed model can accurately characterize the nonlinear characteristics of the distillation process, and the model structure is largely simplified compared with the traditional mechanism model. Therefore, the model provides a new approach for model-based methods in distillation columns, especially for cases that require efficient online models. Two case studies of benzene-toluene distillation systems show that the nonlinear model has high concentration observation accuracy. Finally, a generic model control scheme is designed based on this model. Simulation results show that this control strategy performs better than a traditional PID control scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.