Abstract

Modeling and consensus control of flexible wings with bending deformation and torsion deformation are studied in this paper. Due to the physical properties of flexible materials, vibration suppression of the flexible wings is also considered in addition to consensus control. Different from most of the published work of multi-agent control theory, the agent system studied in this paper is a distributed parameter system. Considering the mutual coupling of the wing's bending deformation, torsion deformation and the rotation angle of the root joint, the dynamics model of each agent can be expressed by a set of partial differential equations (PDEs) and ordinary differential equations (ODEs). Boundary control algorithms are designed to achieve control objectives. It is proved that the states of all agents are consistent and the closed-loop system is asymptotically stable. Finally, numerical simulation is carried out to demonstrate the effectiveness of the proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.