Abstract

The spiral casing of a hydraulic turbine is a complex flow device which contains a passage of 360-degree turning and multiple elements of airfoils (the so-called distributor). A three-dimensional flow analysis has been made to predict the flow behavior inside the casing and distributor. The physical model employs a two-level approach, comprising of (1) a global model that adequately accounts for the geometry of the spiral casing but smears out the details of the distributor, and represents the multiple airfoils by a porous medium treatment, and (2) a local model that performs detailed analysis of flow in the distributor region. The global analysis supplies the inlet flow condition for the individual cascade of distributor airfoils, while the distributor analysis yields the information needed for modeling the characteristics of the porous medium. Comparisons of pressure and velocity profiles between measurement and prediction have been made to assess the validity of the present approach. Flow characteristics in the spiral casing are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.