Abstract

In this paper, we present a novel geometry video (GV) framework to model and compress 3-D facial expressions. GV bridges the gap of 3-D motion data and 2-D video, and provides a natural way to apply the well-studied video processing techniques to motion data processing. Our framework includes a set of algorithms to construct GVs, such as hole filling, geodesic-based face segmentation, expression-invariant parameterization (EIP), and GV compression. Our EIP algorithm can guarantee the exact correspondence of the salient features (eyes, mouth, and nose) in different frames, which leads to GVs with better spatial and temporal coherence than that of the conventional parameterization methods. By taking advantage of this feature, we also propose a new H.264/AVC-based progressive directional prediction scheme, which can provide further 10%-16% bitrate reductions compared to the original H.264/AVC applied for GV compression while maintaining good video quality. Our experimental results on real-world datasets demonstrate that GV is very effective for modeling the high-resolution 3-D expression data, thus providing an attractive way in expression information processing for gaming and movie industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.