Abstract
In order to describe and compensate for complex hysteresis nonlinearities of piezoelectrically actuated fast tool servo (FTS), a novel Linear Fractional order Differentiation Hysteresis (LFDH) model is proposed in this paper. By means of the proposed LFDH model which is established on the fractional calculus theory, an analytical description of hysteresis behaviors of the FTS is derived. Furthermore, the LFDH model-based inverse compensation strategy is proposed to suppress the hysteresis effects of the FTS. Finally, a series of experiments are conducted to verify the effectiveness of the LFDH model and the corresponding compensation approach. The results demonstrate that the proposed LFDH model is efficient for describing hysteresis behaviors and the inverse compensation strategy can significantly suppress the inherent hysteresis of the FTS in open-loop operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.