Abstract

The behaviour of pelletized reed canary grass (RCG) with selected feedstock and process parameters was studied for variation in springback characteristics based on axial changes after the compaction process. Experiments were carried out using a uniaxial single piston cylinder assembly with a proportional integral derivative temperature controller which was built in house for research purposes. A Multiple linear regression analysis based on moisture, temperature, pressure, hold time and their interaction terms was carried out to predict the length of pellets under compression in the die and excellent correlation were obtained. A finite difference method with over relaxation technique was successfully adopted to analyse the pressure and density distributions of biomass under compressive load. The compact geometry and friction between particles and die wall had effects on the pressure and density distributions in the compacted biomass. RCG pellets with lowest expansion were subjected to axial and diametrical compression tests. Bonding and failure analysis were carried out using scanning electron microscope which showed uneven breakage and interparticle voids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call