Abstract

This work aims the numerical modeling and characterization of as-welded microstructure of Ni-Cr-Fe alloys with additions of Nb, Mo and Hf as a key to understand their proven resistance to ductility-dip cracking. Part I deals with as-welded structure modeling, using experimental alloying ranges and Calphad methodology. Model calculates kinetic phase transformations and partitioning of elements during weld solidification using a cooling rate of 100 K.s−1, considering their consequences on solidification mode for each alloy. Calculated structures were compared with experimental observations on as-welded structures, exhibiting good agreement. Numerical calculations estimate an increase by three times of mass fraction of primary carbides precipitation, a substantial reduction of mass fraction of M23C6 precipitates and topologically closed packed phases (TCP), a homogeneously intradendritic distribution, and a slight increase of interdendritic Molybdenum distribution in these alloys. Incidences of metallurgical characteristics of modeled as-welded structures on desirable characteristics of Ni-based alloys resistant to DDC are discussed here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call