Abstract

As the research on hybrid rocket motors advances, more accurate tools are needed to estimate the performance of the system by determining its fundamental parameters. One of them is certainly the regression rate of the solid fuel. Unfortunately, it depends on many complex physical phenomena and interactions which vary with time, space and scale, making the task of predicting its evolution very difficult. To address this issue, Computational Fluid Dynamics (CFD) was employed to investigate the inner workings of a hybrid rocket motor and develop a useful tool to help the design process and contribute to the physical understanding of the problem. By implementing a User-Defined Function (UDF) in a commercial CFD software, it has been possible to simulate the regression rate as a function of heat flux at the fuel surface. The calculation is performed by solving the energy balance at the solid–fluid interface coupled with the pyrolysis Arrhenius equation. Validation has been performed using literature data from Carmicino and Sorge. The results generally agree with the experimental regression rates within 10% of error for HDPE and 20% for HTPB. A significant discrepancy in the regression rates of these two fuels not accounted for by the classical theory was exposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.