Abstract

There are Rogowski coils of various shapes in the on-site measurement, and it is difficult to calculate the electrical quantities of Rogowski coils of curved skeleton and circular cross-section by simulation software. This paper proposes a theoretical derivation to calculate the mutual inductance between the conductors of any shape and Rogowski coils with skeletons of any shape. Based on the derivation, the influence of four skeleton shapes of Rogowski coils and four shapes of the primary conductors on the mutual inductance of Rogowski coils are studied by the comparison between the ideal cases and some non-ideal ones. The gap and gap compensation of the openable Rogowski coils are also considered. Experiments verify the numerical results according to the derivation. It is shown that to reduce the errors of the measurement the circular skeleton deformation should be avoided, the coil’s skeleton should be with curved angle, the primary conductor should be as straight as possible and should go through the center of the skeletons vertically. Furthermore, for the Rogowski coils of the rectangular skeleton, we propose a new skeleton structure to reduce the deviation influence of the primary conductors.

Highlights

  • Rogowski coils, which are called current measurement coils or differential current sensors, are designed to measure different types of alternating and transient current [1]

  • Mutual inductance is a crucial parameter between the inductive voltage and the primary conductors [12,13,14,15]

  • The results of the turns and the radiusshape of thebycross-section of the Rogowski coilderivation of the rectangular were equal calculation of the coils of the oval circularthat skeletons were verified by thedistributed experiments

Read more

Summary

Introduction

Rogowski coils, which are called current measurement coils or differential current sensors, are designed to measure different types of alternating and transient current (from tens to several thousands of amperes) [1]. Traditional electromagnetic current sensors cannot accurately measure high Ampere currents because of the saturation problem of the magnetic core [2], while the Rogowski coil is different: Its skeleton is made of non-ferromagnetic materials, and its turns evenly wound on the skeleton [3]. When a Rogowski coil is around an alternating current-carrying conductor, the coil generates an inductive voltage [1]. To study the influence quantities on mutual inductance is important to ensure the accuracy of Rogowski coil [16,17]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.