Abstract

The induced image charge and image current acquired by a detector tube for mass analysis are simulated using a numerical electrostatic model in the context of the electrostatic ion beam trap (EIBT). With the simulation results, the principle of mass analysis using the induced signal is demonstrated and studied systematically. The results show that the intensity of the detected signal is significantly influenced by the size and configuration of the detector, and also impacted by ion velocity, the number of ions in the ion group, and the ion beam length. The simulation results could not only be used to optimize the size and configuration of the detector and thus to improve the detected signal, but also to support the signal analysis (such as FFT) at an EIBT for mass spectrometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.