Abstract
We present a two-phase thermal-hydrologic-chemical coupled model for simulating the dissolution process during the acidization of carbonate rocks. In particular, we develop a new model to describe the change in irreducible water saturation, residual oil saturation, and the maximum relative permeability of oil and water phases with dissolution proceeding. We also present a new method for the generation of the initial porosity field with controllable correlation length. In numerical calculation, the sequential iteration approach is adopted to solve the presented model, and the operator splitting method is used to deal with the reaction relevant equations. The involved equations are discretized using the finite-volume method, where the convection term is discretized by the MINMOD scheme which can prevent overshoot/undershoot of the numerical solution. Additionally, sensitivity analysis of the dissolution process concerning rock properties, the exothermic heat of reaction, and two-phase flow, is carried out. Based on the predicted results, several recommendations for the carbonate acidizing operation are given, and the potential extensions of the current work are summarized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.