Abstract
Soft grasping of random objects in unstructured environments has been a research topic of predilection both in academia and in industry because of its complexity but great practical relevance. However, accurate modeling of soft hands and fingers has proven a difficult challenge to tackle. Focusing on this issue, this article presents a detailed mathematical modeling and performance analysis of parallel grippers equipped with soft fingers taking advantage of the fin ray effect (FRE). The FRE, based on biomimetic principles, is most commonly found in the design of grasping soft fingers, but despite their popularity, finding a convenient model to assess the grasp capabilities of these fingers is challenging. This article aims at solving this issue by providing an analytic tool to better understand and ultimately design this type of soft fingers. First, a kinetostatic model of a general multi-crossbeam finger is established. This model will allow for a fast yet accurate estimation of the contact forces generated when the fingers grasp an arbitrarily shaped object. The obtained mathematical model will be subsequently validated by numerically to ensure the estimations of the overall grasp strength and individual contact forces are indeed accurate. Physical experiments conducted with 3D-printed fingers of the most common architecture of FRE fingers will also be presented and shown to support the proposed model. Finally, the impact of the relative stiffness between different areas of the fingers will be evaluated to provide insight into further refinement and optimization of these fingers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.