Abstract
Nest-site selection in honeybees is a process of social decision making in which the scout bees in a swarm locate several potential nest sites, evaluate them, and select the best one by means of competitive signaling. We develop a model of this process and validate that the model possesses the key features of the bees' decision-making process, as revealed by prior empirical studies. Next, we use the model to study the “design” of the nest-site selection process, with a focus on how certain behavioral parameters have been tuned by natural selection to achieve a balance between speed and accuracy. First, we study the effects of the quorum threshold and the dance decay rate. We show that evolution seems to have settled on values for these two parameters that seek a balance between speed and accuracy of decision making by minimizing the time needed to achieve a consensus and maximizing the probability that the best site is chosen. Second, we study the adaptive tuning of the tendency of bees to explore for vs be recruited to a site. We show that this tendency appears to be tuned to regulate the positive feedback process of recruitment to ensure both a reasonably rapid choice and a low probability of a poor choice. Finally we show that the probability of choosing the best site is proportional to its quality, but that this proportionality depends on its quality relative to other discovered sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.