Abstract

We characterize a multi tier network with classical macro cells, and multi radio access technology (RAT) small cells, which are able to operate in microwave and millimeter-wave (mm-wave) bands. The small cells are assumed to be deployed along roads modeled as a Poisson line process. This characterization is more realistic as compared to the classical Poisson point processes typically used in literature. In this context, we derive the association and RAT selection probabilities of the typical user under various system parameters such as the small cell deployment density and mm-wave antenna gain, and with varying street densities. Finally, we calculate the signal to interference plus noise ratio (SINR) coverage probability for the typical user considering a tractable dominant interference based model for mm-wave interference. Our analysis reveals the need of deploying more small cells per street in cities with more streets to maintain coverage, and highlights that mm-wave RAT in small cells can help to improve the SINR performance of the users.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call