Abstract

This paper presents an investigation of fixel design alternatives for active (dynamic) fixturing to be incorporated into mesoscale manufacturing systems. Using simple compliant mechanisms and components, fixels exhibiting mechanically adjustable stiffness characteristics are achievable. Via manual or automated stiffness adjustments, these fixels provide functionality for enabling greater control of the dynamic response of the workpiece subject to vibrations and/or variations in contact forces at the tool-workpiece-fixture interface. To quantify the fixel functionality, this paper presents theoretical models of the stiffness characteristics expressed as a function of the mechanical variable(s), thus forming a basis for exploring the adjustability in stiffness achievable for each fixel design. Also presented are results of the dynamic behavior of the active fixturing implemented in a milling process based on a “regenerative force, dynamic deflection model” augmented with the active fixturing variable stiffness model and inclusion of tool runout. These simulation results indicate the expected performance of the active fixturing upon its implementation in actual fixturing for the creation of micron features on micro- and macroparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.