Abstract

Technological advancements in communications and embedded systems have led to the proliferation of Wireless Sensor Networks (WSNs) in a wide variety of application domains. These application domains include but are not limited to mission-critical (e.g., security, defense, space, satellite) or safety-related (e.g., health care, active volcano monitoring) systems. One commonality across all WSN application domains is the need to meet application requirements (e.g., lifetime, reliability). Many application domains require that sensor nodes be deployed in harsh environments, such as on the ocean floor or in an active volcano, making these nodes more prone to failures. Sensor node failures can be catastrophic for critical or safety-related systems. This article models and analyzes fault detection and fault tolerance in WSNs. To determine the effectiveness and accuracy of fault detection algorithms, we simulate these algorithms using ns-2. We investigate the synergy between fault detection and fault tolerance and use the fault detection algorithms’ accuracies in our modeling of Fault-Tolerant (FT) WSNs. We develop Markov models for characterizing WSN reliability and Mean Time to Failure (MTTF) to facilitate WSN application-specific design. Results obtained from our FT modeling reveal that an FT WSN composed of duplex sensor nodes can result in as high as a 100% MTTF increase and approximately a 350% improvement in reliability over a Non-Fault-Tolerant (NFT) WSN. The article also highlights future research directions for the design and deployment of reliable and trustworthy WSNs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call