Abstract

The bench-scale pyrolysis of lignocellulosic biomass was investigated based on effect of thickness by both the experiment and numerical simulation. A critical thickness at which the two peaks of mass loss rate start to merge and the pyrolysis process is significantly accelerated, is paid attention in the fire propagation apparatus experiment at N2 atmosphere. A new method is put forward to predict the merge thickness by coupling the Gpyro pyrolysis model with the optimized chemical reaction parameters, moisture and changed volume in OpenFOAM. Eventually, the predicted equation of merge thickness at various external heat fluxes is obtained, which is basically the same with that of thermal thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.