Abstract

In harmony with modern energy policy and the need to use alternative energy sources, the development of photovoltaic (PV) systems increases. At the same time, the requirements for their energy efficiency and optimal operation also increases and being specified. For this reason, an in-depth study of their individual components and operating modes are required at the PV system design stage. This requires the development of adequate mathematical and simulation models to perform a detailed preliminary analysis of the behavior of PV systems. The object of consideration in this work is an autonomous photovoltaic system designed and developed by the Scientific Research Practice working group at the “T. Kableshkov” University of Transport titled “Study of applications, using voltage converters in renewable energy systems with hydroelectric power”. It contains a photovoltaic module, a buck (step-down) DC-DC converter, a Maximum Power Point Tracking (MPPT) controller, and a DC load. In this paper, a simulation model of the analyzed photovoltaic system is presented. It has been developed in a Matlab/Simulink environment where simulations have been performed under different atmospheric conditions. The simulation results are compared with experimentally collected data and system characteristics and the corresponding results are analyzed. On this basis, the adequacy and accuracy of the proposed model are evaluated in comparison with the real working photovoltaic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.