Abstract

Conventionally, the multi-phase self-excited induction generators (SEIGs) have been analysed either with resistive or static resistive-inductive loads. This endeavor proposes a simple six-phase SEIG (6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> -SEIG) topology feeding induction motors (IMs). Shunt and series capacitances provide excitation current and load voltage compensation for 6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> -SEIG. A stationary reference frame dual dq model including non-linear saturation and cross coupling effects is integrated with IM loads for simulating 6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> -SEIG-IM set. Sub-synchronous resonance (SSR) is associated with series compensated SEIGs. A series capacitance 2.5 times the excitation capacitance causes SSR in studied 6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> -SEIG as starting of IMs is attempted from its terminals. SSR induces low frequency oscillations and spikes load voltage and current amplitudes. A method to overcome SSR is proposed by evaluating a critical value of series capacitance ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$C_{se,cr}$</tex-math></inline-formula> ). Equipped with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$C_{se,cr}$</tex-math></inline-formula> and excitation capacitance the 6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> -SEIG successfully sustains starting, no-load build-up and rated load operation of IMs. A comparison with its equivalent 3 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> counterpart reveals that 6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> -SEIG manages reactive power more efficiently as its optimum capacitance requirement reduces by 1.9 to 3.75 times, it incurs 0.4% to 2.8% lesser %THDs in output parameters and exhibits greater operational flexibility. Experimental results are obtained on an open end winding induction machine operated as SEIG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.