Abstract

Conventionally, the multi-phase self-excited induction generators (SEIGs) have been analysed either with resistive or static resistive-inductive loads. This endeavor proposes a simple six-phase SEIG (6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> -SEIG) topology feeding induction motors (IMs). Shunt and series capacitances provide excitation current and load voltage compensation for 6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> -SEIG. A stationary reference frame dual dq model including non-linear saturation and cross coupling effects is integrated with IM loads for simulating 6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> -SEIG-IM set. Sub-synchronous resonance (SSR) is associated with series compensated SEIGs. A series capacitance 2.5 times the excitation capacitance causes SSR in studied 6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> -SEIG as starting of IMs is attempted from its terminals. SSR induces low frequency oscillations and spikes load voltage and current amplitudes. A method to overcome SSR is proposed by evaluating a critical value of series capacitance ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$C_{se,cr}$</tex-math></inline-formula> ). Equipped with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$C_{se,cr}$</tex-math></inline-formula> and excitation capacitance the 6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> -SEIG successfully sustains starting, no-load build-up and rated load operation of IMs. A comparison with its equivalent 3 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> counterpart reveals that 6 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\phi$</tex-math></inline-formula> -SEIG manages reactive power more efficiently as its optimum capacitance requirement reduces by 1.9 to 3.75 times, it incurs 0.4% to 2.8% lesser %THDs in output parameters and exhibits greater operational flexibility. Experimental results are obtained on an open end winding induction machine operated as SEIG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.