Abstract

The center shift, a common problem existing in rotating flexural pivots, is diminished in a multibeam flexural pivot by the internal interaction among these beams. The objectives of this paper are to develop a model for this flexural pivot and to analyze the interaction. First, the calculus of variations with a Lagrange multiplier is exploited to develop the model based on energy approach. Then, the properties of a conservative system are utilized to analyze the constraint characteristics of these beams, and two different load sequences are taken into account to formulate the rotating stiffness of the flexural pivot. The three methods that are used to develop the same model are compared to show their respective advantages, and the analysis of the internal constraints offers several significant qualitative and quantitative design insights. Furthermore, the circular arc motion is expanded to the elliptic arc motion, and an approximate replacement is therefore presented. Furthermore, the circular arc motion is expanded to the elliptic arc motion, and an approximate replacement is therefore presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call