Abstract

For glass façade cleaning, we developed a reconfigurable robot, Mantis-mini, with a dry cleaning mechanism and linear actuator based transitioning mechanism. It consists of three suction modules, connected by a support structure and each suction module has individual differential drive wheels with independent steering capability. This paper focuses on the detailed design of the platform, static structural analysis for and kinematic formulation. The adhesion performance of the suction module is evaluated using experiments, Computational Fluid Dynamics (CFD) simulations, and analytically formulated estimation. The suction pressure magnitude predicted from the simulations increases with suction impeller speed and agrees well with measurements and analytical calculation in terms of order of magnitude and qualitative trend. An adaptive proportional-integral (PI) controller is designed and implemented for regulating suction pressure and motion controller of the platform. The suction performance of the platform is validated through real-time experiments of the platform on the glass surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.