Abstract

The triple phase shift (TPS) modulation scheme, which provides three control freedoms, is of great importance for the optimized operation of a dual active bridge (DAB) isolated bidirectional dc/dc converter. First of all, this paper introduces an accurate, universal model to describe the analytic expressions of the DAB converter under TPS control. Based on this, six operating modes of the DAB converter are further discussed. Afterwards, the concept of global optimal condition (GOC) equations is proposed to derive the closed form of analytic expressions of an optimal modulation scheme that makes the DAB converter operate with minimized root-mean-square (rms) current during whole power range with different operating modes. According to the GOC equations, the physical explanation of the proposed modulation scheme is further given in details, and the complex interaction among the control variables, the transferred power, and rms current is revealed. The real-time optimization process of the proposed method is also specified. Finally, the proposed methods are applied to a laboratory prototype. The experimental results confirm the theoretical analysis and practical feasibility of the proposed strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.