Abstract

The dynamics of UAV’s have special features that can complicate the process of designing a trajectory tracking controller. In this paper, after modelling the quadrotor as a VTOL UAV, a nonlinear adaptive controller is designed to solve trajectory tracking problem in the presence of parametric and nonparametric uncertainties. This controller doesn’t need knowing any physical parameters of the quadrotor, and there isn’t need to retune the controller for various payloads. In this approach, the control of a quadrotor is performed by using decentralized adaptive controllers in the inner (attitude control) and outer (translational movement control) loops. The outer loop generates the instantaneous desired angles for inner loop. The inner loop stabilizes the orientation of the vehicle. Inverse kinematic of robot is used to convert outputs of the outer loop to inputs of the inner loop. The controller needs some unknown physical parameter to generate control signals. A robust parameter identifier estimates the required parameters for the outer control loops. Simulations are carried out to illustrate the robustness and tracking performance of the controllers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call