Abstract
In order to face with the increasing EU restrictions on CO2 emissions from light-duty vehicles, concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and Waste Heat Recovery (WHR) technologies have been proposed in the last years by OEMs. WHR technologies include Thermo-Electric Generator (TEG), Organic Rankine Cycle (ORC) and Electric Turbo-Compound (ETC) that have been practically implemented on few heavy-duty applications but have not been proved yet as effective and affordable solutions for passenger cars.The paper deals with the analysis of opportunities and challenges of TEG and ETC technologies for a compact car, powered by a turbocharged SI engine. Specifically, the benefits achievable by TEG and ETC have been investigated by simulation analyses carried out by a dynamic engine-vehicle model, validated against steady-state and transient experimental data. The in-cylinder processes and friction losses of the engine are modeled by a black-box scalable parametric approach while grey-box dynamic models are applied for intake/exhaust manifolds and turbocharger. The TEG model is based on existing and commercial thermoelectric materials, specifically Bi2Te3. The simulations have been carried out considering standard driving cycles (i.e. NEDC, WLTC) and the results evidence that significant improvement of fuel economy and CO2 reduction can be achieved by suitable management and configuration of the WHR systems, depending on engine speed and load and auxiliaries demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.