Abstract

Abstract In this work, the dynamics of the spread of COVID-19 is considered in the presence of both human-to-human transmission as well as environment-to-human transmission. Specifically, we expand and modify traditional epidemiological model for COVID-19 by incorporating a compartment to study the dynamics of pathogen concentration in the environmental reservoir, for instance concentration of droplets in closed spaces. We perform a mathematical analysis for the model proposed including an endemic equilibrium analysis as well as a next-generation approach both of which help to derive the basic reproduction number. We also study the e˚cacy of wearing a facemask through this model. Another important contribution of this work is the introduction to physics informed deep learning methods (PINNs) to study the dynamics. We propose this as an alternative to traditional numerical methods for solving system of differential equations used to describe dynamics of infectious diseases. Our results show that the proposed PINNs approach is a reliable candidate for both solving such systems and for helping identify important parameters that control the disease dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.