Abstract

A novel hydrogen power configuration of a Light Hybrid Electric (LHE) rail train able to operate along sub-urban non-electrified rail lines is proposed and analysed in the paper. The electric motors of the emission-free LHE rail train are fed by a hybrid power unit consisting of hydrogen fuel cell stacks and a set of high-speed kinetic energy storage systems. A control strategy of the power-train components has been developed to manage power flows in order to reduce the fuel consumption. This advanced and environment friendly hybrid propulsion system offers the opportunity to increase the power-train efficiency so that the fuel consumption is minimised. Simulator software of the proposed HLE rail train has been implemented in order to design the power-train components and compute train performance. A rail transport service is considered and a round trip journey of the LHE rail train is simulated over an existing re-designed not electrified single track line in the sub-urban area of L’Aquila city (Italy). Furthermore, the specific fuel consumption comparative analysis between the hydrogen rail train and a diesel one running over the selected path in the same operating conditions has been performed and the results are discussed in terms of CO2 emissions too. The results show that the proposed LHE rail train is technically suitable and advantage to operate in urban environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call