Abstract

Biomolecular visualization skills are paramount to understanding key concepts in the biological sciences, such as structure-function relationships and molecular interactions. Various programs allow a learner to manipulate 3D structures, and biomolecular modeling promotes active learning, builds computational skills, and bridges the gap between two dimensional textbook images and the three dimensions of life. A critical skill in this area is to model a protein active site, displaying parts of the macromolecule that can interact with a small molecule, or ligand, in a way that shows binding interactions. In this protocol, we describe this process using four freely available macromolecular modeling programs: iCn3D, Jmol/JSmol, PyMOL, and UCSF ChimeraX. This guide is intended for students seeking to learn the basics of a specific program, as well as instructors incorporating biomolecular modeling into their curriculum. The protocol enables the user to model an active site using a specific visualization program, or to sample several of the free programs available. The model chosen for this protocol is human glucokinase, an isoform of the enzyme hexokinase, which catalyzes the first step of glycolysis. The enzyme is bound to one of its substrates, as well as a non-reactive substrate analog, which allows the user to analyze interactions in the catalytic complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.