Abstract
Estimating parameters of almost cyclostationary non-Gaussian moving average (MA) processes using noisy output-only data is considered. It is shown that second-order cyclic correlations of the output are generally insufficient in uniquely characterizing almost periodically time-varying MA(q) models, while third-order and higher order cumulants can be used to estimate their model parameters within a scale factor. Both linear and nonlinear identification algorithms for fixed and time-varying order q(t) are presented. Statistical model order determination procedures are also derived. Implementation issues are discussed and resistance to noise is claimed when the signal of interest has cycles distinct from the additive noise. Simulations are performed to verify the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.