Abstract

A new thin-film evaporation model is presented that captures the unsimplified dispersion force along with an electronic disjoining pressure component that is unique to liquid metals. The resulting nonlinear fourth-order ordinary differential equation (ODE) is solved using implicit orthogonal collocation along with the Levenberg–Marquardt method. The electronic component of the disjoining pressure should be considered when modeling liquid metal extended meniscus evaporation for a wide range of work function boundary values, which represent physical properties of different liquid metals. For liquid sodium, as an example test material, variation in the work function produces order-of-magnitude differences in the film thickness and evaporation profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call