Abstract
Under certain conditions, the breakthrough time in a fluidized-bed adsorber is considerably shorter than that in a comparable fixed-bed adsorber. This phenomenon is probably due to the appreciable macroscale or axial mixing occurring in the solid and liquid phases of the fluidized bed. An axial dispersion model has been adapted to characterize the fluidized-bed adsorber. The model takes into account the effects of axial mixing in the solid and liquid phases, mass transfer resistance in the laminar fluid boundary surrounding an individual adsorbent particle, and diffusional resistance within the particle. The model has been solved numerically to simulate the performance of a laboratory-scale adsorber. The results of the simulation closely represent experimental observations over wide ranges of the influent flow rate, fluidized-bed height and adsorbent particle size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.