Abstract
The article presents a model for simulating changes in the activity concentration of radon and thoron as well as their progeny in closed or poorly ventilated systems. A system can be considered closed when a stream of radon and thoron flows into a space, but nothing comes out. It was also assumed that there may be devices or installations with a filtering system that would reduce the concentration of radon and thoron decay products. These assumptions may, therefore, correspond to a situation in which, in an isolated chamber, the calibration of radon hazard-monitoring devices is carried out, and nuclides are supplied from an emanation or flow through sources or well-isolated spaces in an environment where the source of nuclides is, for example, radon and thoron exhalation. The differential equations were formulated on the basis of the assumption that the activity concentration of radionuclides of concern in the space is uniform. The equations do not consider possible losses due to diffusion or the inertial or gravitational deposition of aerosols. If these phenomena have a limited impact on changes in the activity concentration of nuclides, the solutions provided may be used to simulate the activity concentration of radon and thoron and their decay products in any confined space assuming different boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.