Abstract
Metamaterials are designed by arranging artificial structural elements according to periodic geometries to obtain advantageous and unusual properties when they are hit by waves. Initially designed to interact with electromagnetic waves, their use naturally extended to sound waves, proving to be particularly useful for the construction of containment and soundproofing systems in buildings. In this work, a new metamaterial has been developed with the use of a polyvinyl chloride membrane on which buttons have been glued. Two types of buttons were used, with different weights, placing them on the membrane according to a radial geometry. Each sample of metamaterial was subjected to sound absorption coefficient measurements using the impedance tube. Measurements were made using the samples by setting three configurations, creating a cavity with different thicknesses. The results of the measurements were subsequently used as input for training a simulation model based on artificial neural networks. The model showed an excellent generalization capacity, returning estimates of the acoustic absorption coefficient of the metamaterial very similar to the measured value. Subsequently, the model was used to perform a sensitivity analysis to evaluate the contribution of the various input variables on the returned output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.