Abstract

Clinical studies have suggested that use of bicarbonate-containing substitution and dialysis fluids during continuous kidney replacement therapy may result in excessive increases in the carbon dioxide concentration of blood; however, the technical parameters governing such changes are unclear. The current work used a mathematical model of acid-base chemistry of blood to predict its composition within and exiting the extracorporeal circuit during continuous veno-venous hemofiltration (CVVH) and continuous veno-venous hemodiafiltration (CVVHDF). Model predictions showed that a total substitution fluid infusion rate of 2 L/h (33% predilution) with a bicarbonate concentration of 32mEq/L during CVVH at a blood flow rate of 200mL/min resulted in only modest increases in plasma bicarbonate concentration by 2.0mEq/L and partial pressure of dissolved carbon dioxide by 4.4mmHg in blood exiting the extracorporeal circuit. The relative increase in bicarbonate concentration (9.7%) was similar to that in partial pressure of dissolved carbon dioxide (8.2%), resulting in no significant change in plasma pH in the blood exiting the CVVH circuit. The changes in plasma acid-base levels were larger with a higher infusion rate of substitution fluid but smaller with a higher blood flow rate or use of substitution fluid with a lower bicarbonate concentration (22mEq/L). Under comparable flow conditions and substitution fluid composition, model predicted changes in acid-base levels during CVVHDF were similar, but smaller, than those during CVVH. The described mathematical model can predict the effect of operating conditions on acid-base balance within and exiting the extracorporeal circuit during continuous kidney replacement therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call