Abstract

This study reports a comprehensive multiphase gas-solid dynamic mathematical model that successfully describes the batch growth of silicon particles in a CVD submerged spouted bed reactor. This multiphase reactor model takes into account the hydrodynamics and interphase mass exchange between the different fluidized bed regions (spout or grid zone, bubbles and emulsion phase) and uses applicable kinetic rate models to describe both heterogeneous and homogeneous reactions. The model also incorporates a population balance equation representing particle growth and agglomeration.The CVD submerged spouted bed reactor operation is simulated by means of a sequential modular procedure, which involves the solution of the reactor model and the population balance equation.It is shown that the proposed CVD multiphase reactor model successfully simulates experimental data obtained from batch operation in a pilot scale reactor at REC Silicon Inc. The modeling of experiments obtained for different operating conditions allows correlating the scavenging factor as a function of the silane concentration for short- and long-term operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.