Abstract

the dispersive losses and the dispersive refractive index change in the laser cavity caused by the presence of the Cs vapor cell. These effects are described through a modification of the complex susceptibility. The numerical results are found to be in qualitative good agreement with some of the observations; however, some discrepancies are also noticed, which can be attributed to multi-longitudinal-mode emission in the experiments. The simulations clearly show the relevant role of the Lamb dips and crossover resonances, which arise on top of the Doppler-broadened D2 line in the Cs spectrum, and are due to the forward and backward intracavity fields interacting resonantly with the Cs atoms. When the laser frequency is locked in a dip, a reduction in the frequency noise and of the intensity noise is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.