Abstract

Abstract This paper presents modeling a novel approach to determine the impact of implementing smart completions on water injectors located near the periphery of the gas cap and on gas producing wells situated in the gas cap of a giant Middle East onshore field. The objective of the study is to thoroughly investigate different smart completion designs which can effectively delay water breakthrough on the gas cap wells. The study investigates the impact of adding smart well completion designs like ICD and AICD valves in delaying water breakthrough. The first phase involves adding smart completions to only water injectors. Sensitivity runs on several downhole completion design scenarios are conducted using a commercial near wellbore simulator and the optimal downhole completion design is implemented on a dynamic model and its impact is examined using a reservoir simulator. In the second phase, this approach is applied only for gas producers, and in the third phase the smart completions are simultaneously applied to both water injectors and gas producers. The detailed study has revealed that the uncertainties and time involved in selecting optimal ICD design and placements could be reduced considerably by using an optimized workflow. The workflow uses a carefully designed process of using the outcomes from near wellbore simulators and incorporating the results in the actual full field dynamic models to assess the field level impacts. When compared to the bare foot design, ICD and AICD valves showed better performance in delaying water breakthrough from the gas wells. This paper provides a detailed study on the impact of different smart completions on delaying water breakthrough in gas production wells. The study also investigates how a uniform injection or production profile can be produced using different smart completions. Uniform injection and production profiles limit water fingering in the reservoir, and thereby delay water breakthrough caused by the flow of water through high permeability channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.