Abstract

A channel-type reactor for the cobalt-based Fischer–Tropsch synthesis reaction was considered and a commercial software package (COMSOL Multiphysics) was used to simulate the profiles of conversion and temperature in the reactor under a variety of conditions. The CO consumption rate was calculated using a lumped kinetic model, and kinetic parameters and the heat transfer coefficient between the reaction module and the atmosphere were estimated to reduce deviations from the experimental measurements. Comparison between simulation results and experimental data corroborated the validity of the developed model with errors lower than 7.00% and 0.15% for CO conversion and temperature in the catalytic bed, respectively. Further examination showed that the increased heat transfer rate in the channel-type reactor resulted in nearly isothermal operation in the catalytic bed, and the temperature was satisfactorily controlled even when the modules were numbered-up for high capacity. In addition, the effect of coolant flow-rate was evaluated to determine operating conditions in the case of numbering-up of reaction modules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.