Abstract

The computational study of structures with chemical relevance is preceded by its modeling in such manner that no calculations can be submitted without the knowledge of their spatial atomic arrangement. In this regard, the use of an object-oriented language can be helpful both to generate the Cartesian coordinates (.xyz file format) and to obtain a ray-traced image. The modeling of chemical structures based on programming has some advantages with respect to other known strategies. The more important advantage is the generation of Cartesian coordinates that can be visualized easily by using free of charge software. Our approach facilitates the spatial vision of complex structures and make tangible the chemistry concepts delivered in the classroom. In this article an undergraduate project is described in which students generate the Cartesian coordinates of 13 Archimedean solids based on a geometrical/programming approach. Students were guided along the project and meetings were held to integrate their ideas in a few lines of programmed codes. They improved their decision-making process and their organization and collecting information capabilities, as much as their reasoning and spatial depth. The final products of this project are the coded algorithms and those made tangible the grade of learning/understanding derived of this activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.